
4 COMPACTNESS AXIOMS

Definition 4.1 Let X be a set and A ⊂ X. A cover of A is a family of subsets of X whose union
contains A. A subcover of a given cover is a subfamily which is also a cover. A refinement of a
cover C is another cover D so that for each D ∈ D, there is C ∈ C such that D ⊂ C. A family
of subsets of X is said to have the finite intersection property (fip) iff every finite subfamily has
a non-empty intersection.

Now suppose that X is a topological space. An open cover of A is a cover consisting of open
subsets of X. Local and point finiteness of covers are obvious extensions of Definition 2.23

A space X is compact iff every open cover of X has a finite subcover. A subset of X is
compact iff it is compact as a subspace iff every cover of the subset by open subsets of X has a
finite subcover.

In one sense compactness is a generalisation of finiteness; every finite space is compact.
If the topology on a space has only finitely members or has a finite basis then the space is
also compact. Using the completeness axiom on the reals, it is readily shown that any closed
bounded interval of R is compact; indeed this generalises to the Heine-Borel theorem which
says that any subset of Rn is compact if and only if it is closed and bounded.

Theorem 4.2 Let X be a topological space. The following are equivalent:

(i) X is compact;

(ii) if C is any family of closed subsets of X having the fip then ∩C∈CC 6= ∅;

(iii) if F is any family of subsets of X having the fip then ∩F∈F F̄ 6= ∅.

Proof. (i)⇒(ii): let C be a family of closed subsets of X such that ∩C∈CC = ∅. Consider
D = {X − C / C ∈ C}. Then D is an open cover of X; let {X − C1, . . . ,X − Cn} be a finite
subcover. Then ∩n

i=1Ci = X − ∪n
i=1(X − Ci) = X −X = ∅, so C cannot have the fip.

(ii)⇒(iii): let F be any family of subsets of X having the fip. Then C = {F̄ / F ∈ F} is a
family of closed sets having the fip, so by (ii), ∩F∈F F̄ = ∩C∈CC 6= ∅.

(iii)⇒(i): let C be an open cover of X. Then F = {X − C / C ∈ C} is a family of subsets
of X with ∩F∈F F̄ = ∅. Thus F cannot have the fip, i.e. there are C1, . . . , Cn ∈ C so that
∩n

i=1(X − Ci) = ∅. Then {C1, . . . , Cn} is a finite subcover of C.

Proposition 4.3 Every closed subset of a compact space is compact.

Proof. Let C be an open cover of the closed subset C of the compact space X. Then C∪{X−C}
is an open cover of X. Let D be a finite subfamily of C∪{X−C} covering X. Then D−{X−C}
is a finite subcover of C.

Proposition 4.4 The continuous image of a compact set is compact.

Proof. Easy.

Proposition 4.5 Every compact subset of a Hausdorff space is closed.

Proof. Let C be a compact subset of the Hausdorff space X, and let x ∈ X − C. For each
y ∈ C, we have x 6= y, so there are disjoint open sets Uy and Vy so that x ∈ Uy and y ∈ Vy.
Then {Vy / y ∈ C} is an open cover of C: let {Vy1 , . . . , Vyn} be a finite subcover. Then ∩n

i=1Uyi

is an open set containing x and contained in X − C. Thus X − C is open so C is closed.
Compacta need not be closed in arbitrary spaces. For example, any subset of an indiscrete

space is compact.
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Theorem 4.6 Suppose that X is a compact space and Y is a Hausdorff space. Then every
continuous bijection f : X → Y is a homeomorphism.

Proof. We use criterion (v) of Theorem 1.19 for continuity of the inverse function f−1 : Y → X.
Let C be any closed subset of X. By Proposition 4.3, C is compact, so by Proposition 4.4,
f(C) is also compact, hence closed by Proposition 4.5. As (f−1)−1(C) = f(C), it follows that
f−1 is continuous.

One significant aspect of this result is that if T is a compact Hausdorff topology on a set
X, then any topology S ⊂ T , with S 6= T is non-Hausdorff, and any topology U ⊃ T , with
U 6= T is non-compact; however, S is compact and U is Hausdorff. Loosely speaking, open
sets abound in Hausdorff spaces but are rather scarce in compact spaces. We should therefore
expect compact Hausdorff spaces to be rather special.

Theorem 4.7 Every compact Hausdorff space is normal.

Proof. Let A and B be disjoint closed subsets of the compact Hausdorff space X. Then A and
B are compact. Let x ∈ A. For each y ∈ B, there are open sets Sy and Ty so that x ∈ Sy,
y ∈ Ty, and Sy ∩ Ty = ∅. As in Proposition 4.5, use compactness of B to obtain open sets Ux

and Vx with x ∈ Ux, B ⊂ Vx, and Ux ∩ Vx = ∅. Now use compactness of A to obtain open sets
U and V so that A ⊂ U , B ⊂ V , and U ∩ V = ∅.

Theorem 4.8 Let X be a non-empty compact Hausdorff space in which every point is an
accumulation point of X. Then X is uncountable.

Proof. Suppose that f : N → X is a function. It suffices to show that f is not surjective. Using
induction on n ∈ N∪{0}, we construct non-empty open sets Vn so that if n ≥ 1 then Vn ⊂ Vn−1

and f(n) /∈ Vn.
Set V0 = X. Given Vn−1, choose a point y ∈ Vn−1 other than f(n): if f(n) /∈ Vn−1 this is

easy; if f(n) ∈ Vn−1, then since f(n) is an accumulation point of X, Vn−1 ∩ (X −{f(n)}) 6= ∅,
by Proposition 1.17. Since X is Hausdorff, f(n) and y have disjoint neighbourhoods, say U and
V are disjoint open sets with f(n) ∈ U and y ∈ V . Let Vn = V ∩ Vn−1. Then Vn satisfies the
inductive requirements.

Consider the family {Vn / n = 1, 2, . . .}. This has the fip, so by Theorem 4.2(iii), ∩∞n=1Vn 6=
∅, say x ∈ ∩∞n=1Vn. Then for each n, x 6= f(n), since x ∈ Vn but f(n) /∈ Vn. Thus f cannot be
surjective.

Corollary 4.9 R is uncountable.

Proof. [0, 1] (or any non-trivial closed interval) satisfies the conditions of Theorem 4.8 so is
uncountable. Thus R is uncountable.

There are many different proofs of the following theorem, all based on some form of the
Axiom of Choice (to which Tychonoff’s theorem is logically equivalent). The version we give
appeals to Zorn’s lemma. Criterion (iii) of Theorem 4.2 is used in this proof.

Theorem 4.10 (Tychonoff’s theorem) Let {Xα / α ∈ A} be a family of compact spaces.
Then ΠXα is compact.

Proof. Let F be any family of subsets of X = ΠXα having the fip. In order to show
that ∩F∈F F̄ 6= ∅, i.e. to exhibit an element of ∩F∈F F̄ , the temptation may be to look at
{πα(F ) / F ∈ F} and appeal to compactness of Xα to find xα ∈ ∩F∈Fπα(F ). The problem
with this approach is that we have too much freedom in our choice of xα and we might choose
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the different points xα (as α varies) in such a way that when we put them together to get a
point x of X, this point x does not lie in ∩F∈F F̄ even though xα ∈ ∩F∈Fπα(F ) for each α ∈ A.
To overcome this problem, we firstly enlarge F using Zorn’s lemma so that the choice of xa is
forced on us.

Let Γ = {A / A is a family of subsets of X having the fip, and F ⊂ A}. Order Γ by ⊂.
Then (Γ,⊂) is a poset. Furthermore (Γ,⊂) satisfies the conditions of Zorn’s lemma, for suppose
∆ ⊂ Γ is such that (∆,⊂) is a non-empty toset and consider

G = ∪∆ = {A ⊂ X / there is A ∈ ∆ such that A ∈ A}.

Then G ∈ Γ, for clearly F ⊂ G, and if A1, . . . , An ∈ G, then there exist A1, . . . ,An ∈ ∆ with
Ai ∈ Ai. Since (∆,⊂) is a toset, one of the families A1, . . . ,An contains all of the others, say
it is An. Then for any i, Ai ∈ An, so, since An ∈ Γ, ∩n

i=1Ai 6= ∅. Thus G ∈ Γ. Moreover, G is
an upper bound for ∆. Thus (Γ,⊂) satisfies the conditions of Zorn’s lemma.

Now let G be a maximal element for Γ. Thus F ⊂ G and G has the fip. It is this family G
which we use to choose the xα.

Claim I. G is closed under finite intersections, for suppose that G1, G2 ∈ G. Then G ∪{G1 ∩
G2} ∈ Γ, so by maximality of G, G1 ∩G2 ∈ G.

Now for each α ∈ A, {πα(G) / G ∈ G} has the fip, so by compactness of Xα, ∩G∈Gπα(G) 6= ∅,
say xα ∈ ∩G∈Gπα(G). Amalgamating the points xα, we get a point x ∈ X so that for each
α ∈ A, πα(x) = xα. It remains to show that x ∈ ∩G∈GḠ, since F ⊂ G, so that ∩G∈GḠ ⊂ ∩F∈F F̄ .

Claim II. For each α ∈ A, and each open Uα ⊂ Xα, so that xα ∈ Uα, we have π−1
α (Uα) ∈ G.

In fact, Uα ∩ πα(G) 6= ∅ for each G ∈ G, so π−1
α (Uα) ∩ G 6= ∅. Thus by maximality of G and

Claim I, π−1
α (Uα) ∈ G.

Claim III. For each open U ⊂ X such that x ∈ U and and each G ∈ G, U ∩G 6= ∅. In fact,
given U open in X with x ∈ U , we may assume that U is basic, say U = ΠUα where Uα = Xα

unless α ∈ {α1, . . . , αn}. Then by claim II, π−1
αi

(Uαi) ∈ G, so by claim I, U ∈ G. Thus for each
G ∈ G, U ∩G 6= ∅.

It follows immediately from claim III that x ∈ Ḡ for each G ∈ G.

Definition 4.11 A space X is locally compact iff every point of X has a compact neighbour-
hood.

Contrast this definition with that of local connectedness: in that definition it was required
that the family of connected neighbourhoods forms a neighbourhood basis whereas here we
require only that the family of compact neighbourhoods be non-empty. Thus we have two
ways of localising a topological property: a strong method where the family of neighbourhoods
satisfying the property forms a neighbourhood basis, and a weak method where it is merely
required that there be at least one neighbourhood satisfying the property. There seems to be a
certain amount of arbitrariness in deciding which method to use for a given topological property.
In the weak method, a topological space which enjoys a property also enjoys it locally. Thus
compact spaces are locally compact.

Proposition 4.12 Let X be a locally compact regular space. Then at each point of X, the
family of closed compact neighbourhoods forms a neighbourhood basis.

Proof. Let x ∈ X and let N be a neighbourhood of x. Let K be a compact neighbourhood of x.
Then K ∩N is a neighbourhood of x. Thus by Theorem 2.11, there is a closed neighbourhood
C of x with C ⊂ K ∩N . As a closed subset of a compact set, C is also compact.

Proposition 4.13 Every locally compact Hausdorff space is Tychonoff.
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Proof. Let X be a locally compact Hausdorff space. Let x ∈ X and C be a closed subset of X
with x /∈ C. Let K be a compact neighbourhood of x and let A = (K − intK)∪ (K ∩C). Then
A is a closed subset of the compact Hausdorff space K and x ∈ K −A. Thus by Theorems 4.7
and 2.20, there is a map f1 : K → [0, 1] with f1(x) = 0 and f1(A) = 1. Define f : X → [0, 1]
by f |K = f1 and f(X − intK) = 1. By Proposition 4.5, K is closed, so by Theorem 1.22, f is
continuous. Since f(x) = 0 and f(C) = 1, we deduce that X is Tychonoff.

Note that locally compact Hausdorff spaces need not be normal, the tangent discs topology
of Example 2.14 being a counterexample.

Definition 4.14 A space X is σ-compact iff it is expressible as a countable union of compact
subsets. A space X is Lindelöf iff every open cover of X has a countable subcover.

Thus Rn with the usual topology is σ-compact. Every subspace of Rn is Lindelöf. Clearly
every σ-compact space is Lindelöf, as is every second countable space. Each converse is false, eg
the cocountable topology of section 1 Problem 3 is Lindelöf but neither σ-compact nor second
countable.

Proposition 4.15 Let X be a locally compact Lindelöf space. Then X is σ-compact.

Proof. For each x ∈ X, let Kx be a compact neighbourhood of x. Then { intKx / x ∈ X} is
an open cover of X. Let { intKxn / n = 1, 2, . . .} be a countable subcover. Then X = ∪Kxn is
a union of countably many compact subsets.

Proposition 4.16 Every regular Lindelöf space is normal.

Proof. The same proof as that of Theorem 3.10 works, except that we replace the (not neces-
sarily countable) cover {Ux / x ∈ A} by a countable subcover {Un / n = 1, 2, . . .}.

Definition 4.17 A space X is paracompact iff every open cover has a locally finite open re-
finement; and is metacompact iff every open cover has a point-finite open refinement.

In contrast to compactness, we cannot say that the fewer the number of open sets the greater the
likelihood of paracompactness. In fact discrete and indiscrete spaces are always paracompact.

Example 4.18 The long line is a connected T4 space which is not paracompact.

Let (A,<) be an uncountable well-ordered set in which each element has only countably many
predecessors, cf Corollary 6 of the Appendix.

For each a ∈ A, let Ia = {a}× (0, 1), and let L = A∪ (∪a∈AIa). Extend < to L by specifying
x < y in each of the following cases:

• x ∈ A, y ∈ Ia, x ≤ a;

• x ∈ Ia, y ∈ A, a < y;

• x ∈ Ia, y ∈ Ib, a < b;

• x, y ∈ Ia, say x = (a, x′) and y = (a, y′), and x′ < y′.

Topologise L using the order topology, i.e. sets of the form (x, y) = {z ∈ L / x < z < y}
together with those of the form [0, y) = {z ∈ L / z < y} form a basis for the topology. With
this topology, L is called the long line (really it should be called the long ray). Basically, L is
constructed from A much as [0,∞) is constructed from {0}∪N by inserting an interval between
a and its successor.

Sorgenfrey’s square, Example 2.15, is an example of a non-paracompact product of two
paracompact spaces.
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Lemma 4.19 Let X be a paracompact space and let A and B be a pair of disjoint subsets with
B closed. Suppose that for each x ∈ B, there are open sets Ux and Vx so that A ⊂ Ux, x ∈ Vx

and Ux ∩ Vx = ∅. Then there are open sets U and V with A ⊂ U , B ⊂ V and U ∩ V = ∅.

Proof. The family {X − B} ∪ {Vx / x ∈ B} is an open cover of X. Let {Wµ / µ ∈ M} be a
locally finite open refinement. Let M1 = {µ ∈ M / there is x ∈ B with Wµ ⊂ Vx}. Then for
each µ ∈ M1, A ∩ Wµ = ∅. Further, ∪{Wµ / µ ∈ M1} = ∪{Wµ / µ ∈ M1}, cf Problem 13
below, so U = X−∪{Wµ / µ ∈ M1} is an open set containing A. The set V = ∪{Wµ / µ ∈ M1}
is an open set containing B. Clearly U ∩ V = ∅.

Theorem 4.20 Every paracompact Hausdorff space is regular and every paracompact regular
space is normal.

Proof. Immediate consequence of Lemma 4.19.

Theorem 4.21 Let X be a paracompact Hausdorff space. Then every open cover of X has a
subordinate partition of unity.

Proof. Let U = {Uα / α ∈ A} be an open cover of X and let V = {Vβ / β ∈ B} be a locally
finite open refinement of U . Choose ϕ : B → A to satisfy: for each β ∈ B, Vβ ⊂ Uϕ(β). For
each α ∈ A, let Wα = ∪{Vβ / ϕ(β) = α}. Then W = {Wα / α ∈ A} is also a locally finite
open refinement of U (W is called a precise refinement). By Theorem 4.20, X is normal, so by
Theorem 2.26, W has a subordinate partition of unity. This partition is also subordinate to U .

Theorem 4.22 Every metrisable space is paracompact.

Proof. Let (X, d) be a metric space and let {Uα / α ∈ A} be an open cover of X. Well-order
A by <.

For each n ∈ N, and each α ∈ A, define an open set Vα,n by induction on n by:

Vα,n =
⋃ {

B

(
x;

1
2n

)
/ x /∈ Uβ for each β < α; B

(
x;

3
2n

)
⊂ Uα;

and x /∈ Vβ,j for each j < n, and each β ∈ A} .

(I) {Vα,n / α ∈ A,n ∈ N} covers X, for given x ∈ X, there is a least α ∈ A so that x ∈ Uα.

Choose n so large that B

(
x;

3
2n

)
⊂ Uα. Then either x ∈ Vα,n or there are j < n and

β ∈ A so that x ∈ Vβ,j .

(II) {Vα,n / α ∈ A,n ∈ N} refines {Uα / α ∈ A}: in fact Vα,n ⊂ Uα.

(III) {Vα,n / α ∈ A,n ∈ N} is locally finite, for suppose that x ∈ X. Let α be the least
element of A for which there is n ∈ N so that x ∈ Vα,n, and choose m ∈ N such that

B

(
x;

1
2m

)
⊂ Vα,n. It is claimed that the neighbourhood B

(
x;

1
2m+n

)
of x meets only

finitely many of the sets Vβ,l. We consider two cases:

(a) if l ≥ m + n, then B

(
x;

1
2m+n

)
∩ Vβ,l = ∅ for each β.

Indeed, if this were not the case, then there are β ∈ A and y ∈ X so that the
following hold:
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∗ y /∈ Uγ for each γ < β;

∗ B

(
y;

3
2l

)
⊂ Uβ;

∗ y /∈ Vγ,k for each k < l and γ ∈ A; and

∗ B

(
x;

1
2m+n

)
∩B

(
y;

1
2l

)
6= ∅, say z ∈ B

(
x;

1
2m+n

)
∩B

(
y;

1
2l

)
6= ∅.

Thus d(x, z) <
1

2m+n
and d(y, z) <

1
2l

. As l ≥ m + n, by the third condition of the

definition of Vβ,l, y /∈ Vα,n: thus y /∈ B

(
x;

1
2m

)
, so we have

1
2m

≤ d(x, y) ≤ d(x, z) + d(y, z) <
1

2m+n
+

1
2l
≤ 1

2m+1
+

1
2m+1

,

which is impossible, so (a) holds.

(b) if l < m + n, then B

(
x;

1
2m+n

)
∩ Vβ,l 6= ∅ holds for at most one β.

To verify this, it is sufficient to show that if y ∈ Vβ,l and z ∈ Vγ,l with β < γ then

d(y, z) >
1
2l

for then y and z cannot both belong to B

(
x;

1
2m+n

)
.

By the definition of Vβ,l and Vγ,l, there are u, v so that y ∈ B

(
u;

1
2l

)
⊂ Vβ,l and

z ∈ B

(
v;

1
2l

)
⊂ Vγ,l; further, B

(
u;

3
2l

)
⊂ Uβ. By the definition of Vβ,l and β < γ,

we have v /∈ Uβ , so d(u, v) ≥ 3
2l

. Thus

d(y, z) ≥ d(u, v) − d(u, y)− d(v, z) >
3
2l
− 1

2l
− 1

2l
=

1
2l

.

This verifies (b).

Combining (a) and (b), we see that {Vα,n / α ∈ A,n ∈ N} is locally finite.

Thus X is paracompact.

Exercises

1. Let f : X → Y be a continuous surjection, X being compact and Y Hausdorff. Suppose
that g : Y → Z is a function and that gf : X → Z is continuous. Prove that g is
continuous.

2. Let A and B be disjoint compact subsets of the Hausdorff space X. Prove that there are
open sets U and V so that A ⊂ U , B ⊂ V and U ∩ V = ∅.

3. Let A and B be disjoint subsets of the Tychonoff space X, with A compact and B closed.
Prove that there is a continuous function f : X → [0, 1] so that f(A) = 0 and f(B) = 1.

4. Prove that all cubes are T4.

5. Consider the product space X × Y , where Y is compact. Suppose that x0 ∈ X and N is
an open subset of X × Y containing {x0} × Y . Prove that there is an open set U ⊂ X
such that {x0} × Y ⊂ U × Y ⊂ N .
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6. Let f : X → Y be a function where Y is compact and Hausdorff. Prove that f is
continuous iff the graph of f , Γ(f) = {(x, f(x)) / x ∈ X}, is closed in X × Y . [Hint: if
Γ(f) is closed and N is a neighbourhood of f(x0), apply Problem 5 to the set (X ×N)∪
(X × Y − Γ(f)).]

7. Let X and Y be compact Hausdorff spaces and f, g : X → Y be continuous functions.
Show that there is an x ∈ X with f(x) = g(x) if and only if for each open cover C of Y
there is an x ∈ X and a U ∈ C with f(x), g(x) ∈ U .

8. Let X be paracompact and Y compact. Prove that X × Y is paracompact.

9. Let A be a dense subset of a space X and f : A → Y continuous, where Y is compact
and Hausdorff. Prove that there is a continuous g : X → Y with g|A = f iff for each pair
B,C of disjoint closed subsets of Y , f−1(B) ∩ f−1(C) = ∅.

10. Suppose that infinitely many of the spaces {Xα / α ∈ A} are non-compact. Show that
any compact subset K of ΠXα is nowhere dense, i.e. intK = ∅.

11. What does Problem 10 tell us about the local compactness of a product of locally compact
spaces?

12. Let X be a σ-compact, locally compact Hausdorff space. Prove that X is paracompact.
[Hint: start off by finding sequences of compacta 〈Kn〉 and open sets 〈Un〉 so that ∪Kn =
X, Kn ⊂ Un and Ui ∩ Uj 6= ∅ only if |i− j| ≤ 1.]

13. Let X be a space and let F be a locally finite family of subsets of X. Prove that
∪{F ∈ F} = ∪{F̄ / F ∈ F}.

14. Let X be as in Problem 18 of section 1. Prove that X is not Lindelöf. What other
topological properties does X enjoy or fail to enjoy?

15. Prove that any locally compact, paracompact, connected space is Lindelöf. Hence, using
Problem 14 of section 3, prove that every locally connected, locally compact, paracompact,
separable space is Lindelf.

16. Prove that every metacompact, separable space is Lindelöf. (Thus the last part of Problem 15
can be improved considerably.)
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